Ambiguity all the way down:
Inferring intentions from the acoustic signal

Chigusa Kurumada
University of Rochester
ckuruma2@ur.rochester.edu
Milliseconds
why do we care?

Chigusa Kurumada
University of Rochester
ckuruma2@ur.rochester.edu
German vs. Japanese

Rolf

Would you like some tea?

I'm not asking if you are okay or not.

Do you want tea? Or not.

Chigusa

Thanks. I’m okay.

… No, thanks.
message component

lexical grammatical component

phonological component

output system

e.g., Pierrehumbert & Hirschberg (1990)

"Thanks. I'm okay"

"(um....)thanks"

yes

no
Inferring intentions from the signal

- Listeners use the signal ("s") as evidence to inferentially arrive at the speaker’s intention ("i")
- **Ambiguity** provides us with a lens through which to study the inference

```
"Thanks!"  "(um....)thanks"
```

```
[Diagram showing two意向 (i) nodes connected by "s" signal to "Thanks!" and "(um....)thanks"]
```
Today

1. Ambiguity in language comprehension
2. Speaker-dependent inference over Question vs. Statement intonation contours
3. Real-time ambiguity resolution in understanding the speaker’s communicative intentions
4. Discussion: What does the investigation of language comprehension tell us about ambiguity?
Variability and ambiguity

phoneme

acoustic signal

Newman et al. 2001
Variability and ambiguity

“emergency”

meanings

words
Variability and ambiguity

intentions

sentences

“I saw a boy with a binocular.”
Natural language is ambiguity-ridden

- The same physical input can support multiple hypotheses (e.g., sounds, words, intentions).
- Different speakers use language differently
- The human brain is resolving the ambiguity at the rate of 2.5 words (4-6 syllables) / second
Speaker-dependent adaptation: sounds

“medicine”

(e.g., Perceptual learning in phoneme categorization: Norris et al., 2003; 2016; Vroomen et al., 2004, 2007; Kraljic & Samuel, 2007; Kleinschmidt & Jaeger, 2011; 2015)

(Liu & Jaeger 2018)
Speaker-dependent adaptation: meaning

“many of the dots are blue”
Our hypothesis

- Mappings between intentions and acoustic realizations of speech can be similarly probabilistic.
- Overtime listeners updating their assumptions about $p(\text{linguistic signal} \mid \text{intention, speaker})$
2 Speaker-dependent interpretations of English intonation contours with Andrés Buxó-Lugo
Intonation is a powerful means to convey intentions. For example, rising and falling intonations are generally mapped onto questions and statements.

- Variability - ambiguity
 - e.g., American English vs. British English
 - Adults vs. Children
 - Animated vs. quiet speakers

(e.g., Bolinger, 1986; Breen et al., 2012; Cutler, 1977; Dahan, 2015; Ladd, 1983; Watson, Gunlogson, & Tanenhaus, 2006; 2008; Ito & Speer, 2008; Pierrehumbert & Hirschberg, 1990)
Speaker-dependent adaptation

Do listeners update their assumptions about
\[p(\text{intonation} \mid \text{intention} = \text{question, speaker}) \] ?

(Kurumada, Brown, & Tanenhaus, 2017; Buxó-Lugo & Kurumada, in preparation)
Study 1-a: Production

‣ “It’s X-ing” (e.g., It’s raining, It’s raining?)

‣ Q: How much variability is there in the input?
 ▶ 33 subjects
 ▶ 24 questions and 24 statements

(Buxó-Lugo & Kurumada, in preparation)
Study 1-a: Results

![Graph showing the relationship between last syllable pitch increase (Hz) and last syllable duration increase (milli-seconds). The graph includes data points for words like 'It’s X-ing', where X represents different characters. The data points are labeled as 'Q' and 'S'.]
Study 1-a: Results

It’s X-ing

1 2 3
Study 1-a: Results

It’s X-ing
1 2 3
Adaptation to speaker’s intonations?

- prediction: depending on the patterns of production by a given speaker, ambiguous tokens receive opposing interpretations
Study 1-b: Stimuli

“It’s moving”

step I (statement)

step II (question)
Study 1-b: Design (n=180)

Pre-exposure (24 trials)
“It’s cooking” sampled from Steps 1-11
“Is this a question or a statement?”

Exposure (30 trials) with feedback
3 between subject conditions

Post-exposure (24 trials) : identical to the pre-exposure phase
Question-biasing Non-ambiguous Statement-biasing

step 1 3 5 7 9 11

% Question response

most statement-like

most question-like
Study 1: Summary

Listeners rapidly (after 30 tokens of exposure) update their assumptions about $p(\text{intonation} \mid \text{intention, speaker})$ to better resolve ambiguity.
Speaker-dependency: Questions

e.g.,

- How much input necessary?
- Can we track language uses of multiple speakers simultaneously?
- Can you apply this logic to an author/book/literary genre?
- Does this an explicit modulation of judgment patterns? Or does our real-time inference process get modulated?
Real-time ambiguity resolution in pragmatic inferences

with Sadie Dix et al.
Inferences based on adjectives

- “Can you pass me the large cup?”
- Ambiguity between two intentions
 1) “large” with respect to a standard
 2) “larger” in contrast to a contextual alternative
Study 2-a: Eye-tracking experiment

<table>
<thead>
<tr>
<th>Target</th>
<th>Competitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 large objects</td>
<td>2 small objects</td>
</tr>
<tr>
<td>target = mentioned</td>
<td></td>
</tr>
</tbody>
</table>

- competitor = compatible with the said adjective

"Click on the large cup"

Sedivy et al., (1999); Grodner & Sedivy (2011)
Proportions of fixations

Time relative to the adjective onset (ms)

Click on the (e.g., large) (e.g., cup)

Target

Competitor
Study 2-a: Eye-tracking experiment

<table>
<thead>
<tr>
<th></th>
<th>no-contrast</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>target</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>l-contrast</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>target</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Click on the large cup”

Sedivy et al., (1999); Grodner & Sedivy (2011)
Study 2-a: Eye-tracking experiment

- I contrast set
- the adjective is more likely to convey the contrastive interpretation
- “large” can trigger fixations to the target

```
<table>
<thead>
<tr>
<th></th>
<th>I-contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>target</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
</tr>
<tr>
<td>competitor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

“Click on the large cup”

Sedivy et al., (1999); Grodner & Sedivy (2011)
contrastive interpretation

Click on the
(e.g., large)

(e.g., cup)

Proportions of fixations

Time relative to the adjective onset (ms)
Study 2-a: Summary

- Listeners derive the contrastive interpretation when there is a unique contrast set (i.e., 1-contrast condition)

- Does updated expectations change the time-course of real-time language comprehension?
Study 2-b: Manipulations

- **Instruction:** *This speaker has a communicative impairment, which can cause linguistic problems.* *i.e., this speaker may not use language in an expected manner*

- **Redundant (over-informative) adjective uses** *(e.g., “the large yellow banana” when there is only one banana = adjective non-contrastive)*

- **Prediction:** If listeners process the signal based on the updated expectation, they will be less likely to make the contrastive inference.
Experiment 2-b: Results

Study 2-a
(ordinary speaker)

Study 2-b
(redundant speaker)
Study 2: Summary

- Listeners **update** their expectations about the likelihood with which the speaker uses adjectives to convey the “contrastive” interpretation (e.g., the larger of the two).

- Adaptation of expectations about the speaker’s language use modulates the amount of ambiguity listeners experience on a milli-second by milli-second basis.
Discussion
Ambiguity all the way down

- Inherent ambiguity in signal-intention mappings
- Even when listeners are not consciously experiencing any problem, the brain is consistently resolving the ambiguity.
What allows us to resolve ambiguity?

Fast and accurate ambiguity resolution relies on 1) an underlying model of possible signal-intention mappings and 2) flexible fine-tuning of expectations according to recent experiences in context.
Where does ambiguity exist?

- Is ambiguity a property of the linguistic signal? Or does ambiguity emerge in the process/act of perceiving and interpreting the language?
- Roles of expectations and experiences
Thank you!

For discussions: Andres Buxó-Lugo, T. Florian Jaeger, Xin Xie, HLP lab
For R/Praat scripting: Meredith Brown, Dave Kleinschmidt
For testing and annotation: Sadie Dix, Bethany Gardner, Cameron Morgan, Rebecca Lawrence, Anaclare Sullivan, Sherwin Nourani, Manasvi Chaturvedi, Nicole Vieyto

http://kinderlab.bcs.rochester.edu/